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Q1 Black hole thermodynamicsThe goal of this problem is to explore some interesting properties of Black Holes. The followingequation was obtained by L. Smarr in 1973:
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where M , J , Q and A are the mass, angular momentum, charge and area of the event horizonof a black hole.
To make contact with thermodynamics we write for the entropy of the Black Hole,
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where kB is the Boltzmann constant.
- Work in natural unitsG = ~ = c = 1 and show that the equation for the entropy is dimension-ally correct.- Take kB = 1/8π (by choosing units) and derive an expression for S(M,J,Q). Is this expres-sion unique? (Hint: What is the entropy of the Schwarzschild Black Hole which correspondsto J = Q = 0?)
We suppose the mass-energy M (since c = 1) plays the role of internal energy. Show that
T,Ω,Φ defined via,

dM = TdS + ΩdJ + ΦdQ

are given by,
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This is the analog of the first law of thermodynamics.-Look at the expression for M(S, J,Q) closely and derive the analog of the Gibbs-Duhem Re-lation familiar from Thermodynamics.- Show that,
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as T → 0. What does this say about the third law of thermodynamics? Give reasons to supportyour answer.
An alternative statement to the third law is that ”it is impossible to reach absolute-zero in afinite number of steps”. What can we conclude from part (e)?

Q2 Little Mario and the Cylindrical BeamLittle Mario wishes to jump over a very long (practically infinite) cylindrical beam of radius rwhose axis is at a height h from the ground. With what minimum initial speed must he launchhimself if:
- Mario is allowed to touch the beam (neglect frictional effects)?
- Mario is not allowed to touch the beam?
Approximate Little Mario by a point particle for convenience. Acceleration due to gravity is
g.

Q3 Classical Probability Distribution for Quantum States?The goal of this problem is to try and mimic a Statistical Mechanics approach to QuantumMechanics. In Classical Statistical Mechanics one has the usual Gibbs-Boltzmann Formulawhich gives the probability distribution in phase-space to be:
ρ(x1, . . . , xn, p1, . . . , pn) ∼ exp(−βH(x1, . . . , xn, p1, . . . , pn))

where H is the Hamiltonian of the system.
- Why can’t we demand a similar probability distribution over phase-space in Quantum Me-chanics?
If the wave function ψ(x1, . . . , xn) is given, we construct the following expression:
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which are the correct probabilities for the co-ordinates.
- Show that, ∫ ∞
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∣∣∣ψ̃(p1, . . . , pn)

∣∣∣2
which are the correct probabilities for the momenta where,
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is the Fourier transform of the wave-function ψ(x1, . . . , xn).
- The function P defined above therefore seems to be a good candidate for a probability dis-tribution in Quantum Mechanics. Would this not contradict part (a)? Give reasons to supportyour answer.
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