AoPS Community

www.artofproblemsolving.com/community/c1802064
by kapilpavase, Kayak

Q1 Let $M>1$ be a natural number. Tom and Jerry play a game. Jerry wins if he can produce a function $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfying
$-f(M) \neq M$

- $f(k)<2 k$ for all $k \in \mathbb{N}$
- $f^{f(n)}(n)=n$ for all $n \in \mathbb{N}$. For each $\ell>0$ we define $f^{\ell}(n)=f\left(f^{\ell-1}(n)\right)$ and $f^{0}(n)=n$

Tom wins otherwise. Prove that for infinitely many M, Tom wins, and for infinitely many M, Jerry wins.

Proposed by Anant Mudgal
Q2 Does there exist a nonzero algebraic number α with $|\alpha| \neq 1$ such that there exists infinitely many positive integers n for which there's $\beta_{n} \in \mathbb{C}$ with $\beta_{n} \in \mathbb{Q}(\alpha)$ and $\beta_{n}^{n}=\alpha$?

Q3 Let $p \in \mathbb{N} \backslash\{0,1\}$ be a fixed positive integer. Prove that for every $K>0$, there exist infinitely many n and N such that there are atleast $\frac{K N}{\log (N)}$ primes among the following N numbers given by

$$
n+1, n+2^{p}, n+3^{p}, \cdots, n+N^{p} .
$$

Proposed by Bimit Mandal

Q4 Let n be a fixed positive integer.

- Show that there exist real polynomials $p_{1}, p_{2}, p_{3}, \cdots, p_{k} \in \mathbb{R}\left[x_{1}, \cdots, x_{n}\right]$ such that

$$
\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{2}+p_{1}\left(x_{1}, \cdots, x_{n}\right)^{2}+p_{2}\left(x_{1}, \cdots, x_{n}\right)^{2}+\cdots+p_{k}\left(x_{1}, \cdots, x_{n}\right)^{2}=n\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)
$$

-Find the least natural number k, depending on n, such that the above polynomials $p_{1}, p_{2}, \cdots, p_{k}$ exist.

Q5 Find the largest constant c, such that if there are N discs in the plane such that every two of them intersect, then there must exist a point which lies in the common intersection of $c N+$ $O(1)$ discs

