

AoPS Community

www.artofproblemsolving.com/community/c1802064 by kapilpavase, Kayak

Q1 Let M > 1 be a natural number. Tom and Jerry play a game. Jerry wins if he can produce a function $f : \mathbb{N} \to \mathbb{N}$ satisfying

 $f(M) \neq M$ - f(k) < 2k for all $k \in \mathbb{N}$ - $f^{f(n)}(n) = n$ for all $n \in \mathbb{N}$. For each $\ell > 0$ we define $f^{\ell}(n) = f(f^{\ell-1}(n))$ and $f^{0}(n) = n$

Tom wins otherwise. Prove that for infinitely many M, Tom wins, and for infinitely many M, Jerry wins.

Proposed by Anant Mudgal

- **Q2** Does there exist a nonzero algebraic number α with $|\alpha| \neq 1$ such that there exists infinitely many positive integers *n* for which there's $\beta_n \in \mathbb{C}$ with $\beta_n \in \mathbb{Q}(\alpha)$ and $\beta_n^n = \alpha$?
- **Q3** Let $p \in \mathbb{N} \setminus \{0, 1\}$ be a fixed positive integer. Prove that for every K > 0, there exist infinitely many n and N such that there are atleast $\frac{KN}{\log(N)}$ primes among the following N numbers given by

$$n+1, n+2^p, n+3^p, \cdots, n+N^p.$$

Proposed by Bimit Mandal

Q4	Let n be a fixed positive integer. - Show that there exist real polynomials $p_1, p_2, p_3, \cdots, p_k \in \mathbb{R}[x_1, \cdots, x_n]$ such that
	$(x_1+x_2+\cdots+x_n)^2+p_1(x_1,\cdots,x_n)^2+p_2(x_1,\cdots,x_n)^2+\cdots+p_k(x_1,\cdots,x_n)^2=n(x_1^2+x_2^2+\cdots+x_n^2)$ - Find the least natural number k , depending on n , such that the above polynomials p_1, p_2, \cdots, p_k exist.
Q5	Find the largest constant c , such that if there are N discs in the plane such that every two of them intersect, then there must exist a point which lies in the common intersection of $cN + O(1)$ discs

Art of Problem Solving is an ACS WASC Accredited School.