Art of Problem Solving

AoPS Community

www.artofproblemsolving.com/community/c1802054
by GeoMetrix, Pluto 1708

Q1 Let $f(x)=x^{2021}+15 x^{2020}+8 x+9$ have roots a_{i} where $i=1,2, \cdots, 2021$. Let $p(x)$ be a polynomial of the sam degree such that $p\left(a_{i}+\frac{1}{a_{i}}+1\right)=0$ for every $1 \leq i \leq 2021$. If $\frac{3 p(0)}{4 p(1)}=\frac{m}{n}$ where $m, n \in \mathbb{Z}, n>0$ and $\operatorname{gcd}(m, n)=1$. Then find $m+n$.

Q2 Suppose $f: \mathbb{R}^{+} \mapsto \mathbb{R}^{+}$is a function such that $\frac{f(x)}{x}$ is increasing on \mathbb{R}^{+}. For $a, b, c>0$, prove that

$$
2\left(\frac{f(a)+f(b)}{a+b}+\frac{f(b)+f(c)}{b+c}+\frac{f(c)+f(a)}{c+a}\right) \geq 3\left(\frac{f(a)+f(b)+f(c)}{a+b+c}\right)+\frac{f(a)}{a}+\frac{f(b)}{b}+\frac{f(c)}{c}
$$

Q3 An acute scalene triangle $\triangle A B C$ with altitudes $\overline{A D}, \overline{B E}$, and $\overline{C F}$ is inscribed in circle Γ. Medians from B and C meet Γ again at K and L respectively. Prove that the circumcircles of $\triangle B F K, \triangle C E L$ and $\triangle D E F$ concur.

Q4 Let $n>1$ be any integer. Define f, g as functions from $\{0,1,2, \cdots, n-1\}$ to $\{0,1,2, \cdots, n-1\}$ defined as

$$
\begin{aligned}
& f(i)=2 i \quad(\bmod n) \\
& g(i)=2 i+1 \quad(\bmod n)
\end{aligned}
$$

Show that for any integers $\ell, m \in\{0,1,2, \cdots, n-1\}$, there are infinitely many compositions of f, g that map ℓ to m

Q5 Let $A B C$ be a triangle with I as incenter. The incircle touches $B C$ at D.Let D^{\prime} be the antipode of D on the incircle.Make a tangent at D^{\prime} to incircle. Let it meet $(A B C)$ at X, Y respectively.Let the other tangent from X meet the other tangent from Y at Z. Prove that $(Z B D)$ meets $I B$ at the midpoint of $I B$

