

## **AoPS Community**

www.artofproblemsolving.com/community/c1802054 by GeoMetrix, Pluto1708

- **Q1** Let  $f(x) = x^{2021} + 15x^{2020} + 8x + 9$  have roots  $a_i$  where  $i = 1, 2, \dots, 2021$ . Let p(x) be a polynomial of the sam degree such that  $p\left(a_i + \frac{1}{a_i} + 1\right) = 0$  for every  $1 \le i \le 2021$ . If  $\frac{3p(0)}{4p(1)} = \frac{m}{n}$  where  $m, n \in \mathbb{Z}, n > 0$  and gcd(m, n) = 1. Then find m + n.
- **Q2** Suppose  $f : \mathbb{R}^+ \to \mathbb{R}^+$  is a function such that  $\frac{f(x)}{x}$  is increasing on  $\mathbb{R}^+$ . For a, b, c > 0, prove that

$$2\left(\frac{f(a) + f(b)}{a + b} + \frac{f(b) + f(c)}{b + c} + \frac{f(c) + f(a)}{c + a}\right) \ge 3\left(\frac{f(a) + f(b) + f(c)}{a + b + c}\right) + \frac{f(a)}{a} + \frac{f(b)}{b} + \frac{f(c)}{c}$$

- **Q3** An acute scalene triangle  $\triangle ABC$  with altitudes  $\overline{AD}, \overline{BE}$ , and  $\overline{CF}$  is inscribed in circle  $\Gamma$ . Medians from B and C meet  $\Gamma$  again at K and L respectively. Prove that the circumcircles of  $\triangle BFK, \triangle CEL$  and  $\triangle DEF$  concur.
- **Q4** Let n > 1 be any integer. Define f, g as functions from  $\{0, 1, 2, \dots, n-1\}$  to  $\{0, 1, 2, \dots, n-1\}$  defined as

$$f(i) = 2i \pmod{n}$$
$$g(i) = 2i + 1 \pmod{n}$$

Show that for any integers  $\ell,m\in\{0,1,2,\cdots,n-1\}$  , there are infinitely many compositions of f,g that map  $\ell$  to m

**Q5** Let ABC be a triangle with I as incenter. The incircle touches BC at D. Let D' be the antipode of D on the incircle. Make a tangent at D' to incircle. Let it meet (ABC) at X, Y respectively. Let the other tangent from X meet the other tangent from Y at Z. Prove that (ZBD) meets IB at the midpoint of IB

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.